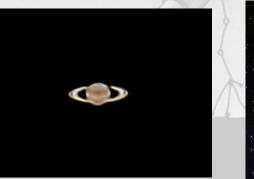
Beginning Astrophotography


Sifan Kahale Hōkū Wahine

Beginning Astrophotography

- Types of Astrophotography
- Cameras and attaching
- Field of View
- Filters, Light Pollution
- Calibration Frames
- Processing, Stacking
- Hints & Tips
- References

Types of Astrophotography

- Intentional Star Trails
- DLSR and tripod
- Guided DLSR
 - "Door-hinge"
 - "Piggy-back"
- Telescope Imaging
 - Planetary vs Deep Sky

Camera Types

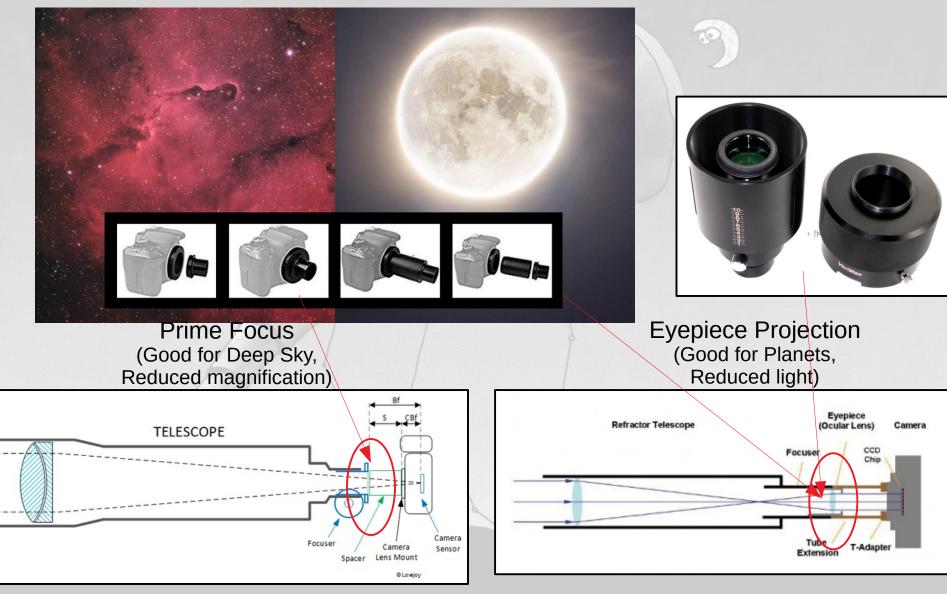
- DSLR vs Monochrome
- CCD vs CMOS
 - Expense vs Lower Bits/Pixel
- Phone or Tablet?

Specs

- Pixel size and dimensions (resolution)
 - 3.8um, 4656 x 3520 (16megapixels)
- Frame size and dimensions (FOV)
 - 17.7mm x 13.4mm
- Full well (saturation level)
 - 20 Kev
- Read Noise (background noise of camera)
 - 1.2-3.6e
- Bits per Pixel (color depth)
 - 16 bpp (65535 max ADU)

Attaching Your Camera

- Need a way to mount it
 - T-adapter, phone adapter, etc.
- Make it secure
 - Screw threads best, Safety clip
- 3 Ways: A-focal, Prime, Projection



A-Focal Projection

(Difficult to align, vignetting)

Prime Focus, Eyepiece Projection

Field Flatteners, Focal Reducers, and Barlows

• Flattener

- Mirrors esp have a curved focal plane not good as a camera expects a flat focal plane. This corrects it.
 - Image will be sharp in the center, out of focus at edges
- Reducer
 - Usually .8x, reduces magnification, gives larger FOV and brighter intensity
- Flattener and Reducer can be purchases as one unit
 - These insert (usually screw threads) into the imaging stack
- Barlow
 - 2x or 3x magnification, at the expense of light intensity and FOV
 - For eyepiece projection, inserted with or without eyepiece

FOV: Reducer, Normal, Barlow

.8x Reducer

Targets	Mode	Ima	ige	Opti	ions	Help
Explore Scientific	*	ZW Optical		•	Results	
AR152 f/6.5	*	ASI1600M	SI1600M -		FOV: 1.28° x 0.97°	
- Aperture: 152mm - F		- Pixel size: <mark>3.8</mark> μm			ion: 0.99"/pixel	
- Focal length: 988mm		- Image size: 4656 x 3520		Area: 1.24 sq°		
- Focal ratio: f/6.5		- Sensor size: 17.7 x 13.4mm			ngth: 790mm	
- Barlow/Focal red	- Binning: 1x	1	Focal ratio: f/5.2			

1x Prime Focus

Targets	Mode		Image	Opti	ons	Help
Explore Scientific	•	Z	W Optical	*	Results	
AR152 f/6.5	*	A	SI1600M	*	FOV: 1.0)3° x 0.78°
- Aperture: 152mm		- Pixel size: 3.8 μm		Resolution: 0.79"/pixel Area: 0.80 sq°		
- Focal length: 988mm		- Image size: 4656 x 3520				
- Focal ratio: f/6.5		- Sensor size: 17.7 x 13.4mm			ngth: 988mm	
- Barlow/Focal reducer: 1x		- Binning: 1×1		Focal ratio: f/6.5		

M42

0000

M42

2x Barlow

Targets	Mode		Image	Opt	ions	Help
Explore Scientific	•	Z	W Optical	•	Results	
AR152 f/6.5	*	A	SI1600M	*	FOV: 30	.78' x 23.27'
- Aperture: 152mm		- Pixel size: 3.8 μm		Resolution: 0.40"/pixel		
- Focal length: 988	mm	- In	nage size: 4656 x 35	520	Area: 0.	20 sq°
- Focal ratio: f/6.5		- S	Sensor size: 17.7 x 13.4mm			ngth: 1976mm
- Barlow/Focal reducer: 2x		- B	- Binning: 1x1		Focal ratio: f/13.0	

ES152 vs C14-Edge

Targets	Mode		Image	Opt	ions	Help	
Explore Scientific		Z	W Optical	¥	Results		
AR152 f/6.5 -		ASI1600M 👻		FOV: 1.0	FOV: 1.03° x 0.78°		
- Aperture: 152mm		- Pi	- Pixel size: <mark>3.8</mark> μm			ion: 0.79"/pixel	
- Focal length: 988mm		- In	- Image size: 4656 x 3520		Area: 0.	80 sq°	
- Focal ratio: f/6.5		- Se	- Sensor size: 17.7 x 13.4mm			ngth: 988mm	
- Barlow/Focal reducer: 1x		- Bi	inning: <mark>1</mark> x1		Focal ratio: f/6.5		

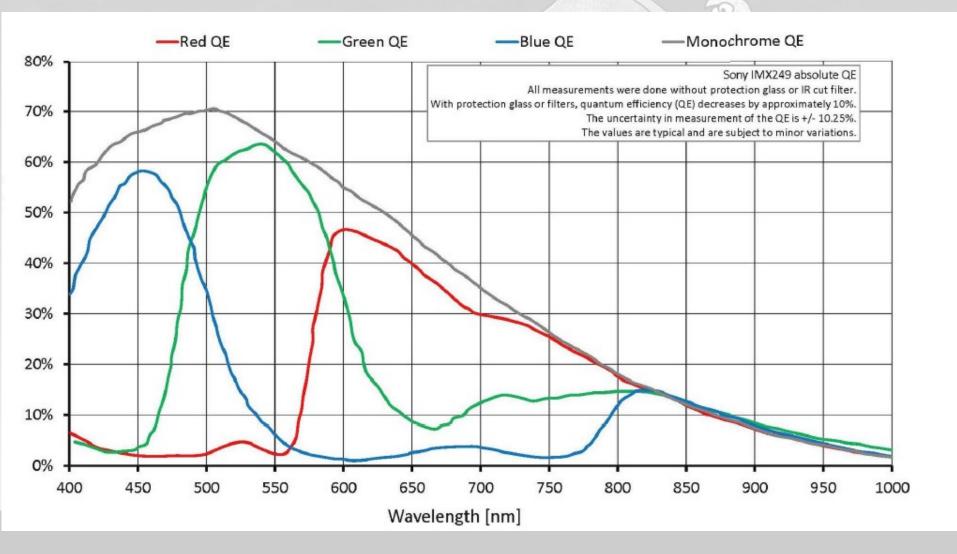
			. 20.			
		1	14"			
Targets	Mode		Image	Opti	ons	Help
Celestron	*	ZV	V Optical	•	Results	
C14-A XLT	*	As	511600	•	FOV: 15	.56' x 11.76'
- Aperture: 355.6mm		- Pixel size: <mark>3.8</mark> μm		Resolution: 0.20"/pixel		
- Focal length: 3910mm		- Image size: 4656 x 3520		Area: 18	32.9 sq'	
- Focal ratio: f/11.0		- Sensor size: 17.7 x 13.4mm		Focal length: 3910mm		
- Barlow/Focal reduc	cer: 1x	- Bi	nning: 1×1		Focal ra	tio: f/11.0

Field of View

- Excellent online calculator
 - http://www.12dstring.me.uk/fovcalc.php
 - Has most telescopes and cameras included
- Create a table for your equipment
 - Telescopes/Eyepieces/Cameras/Barlow/Reducer...

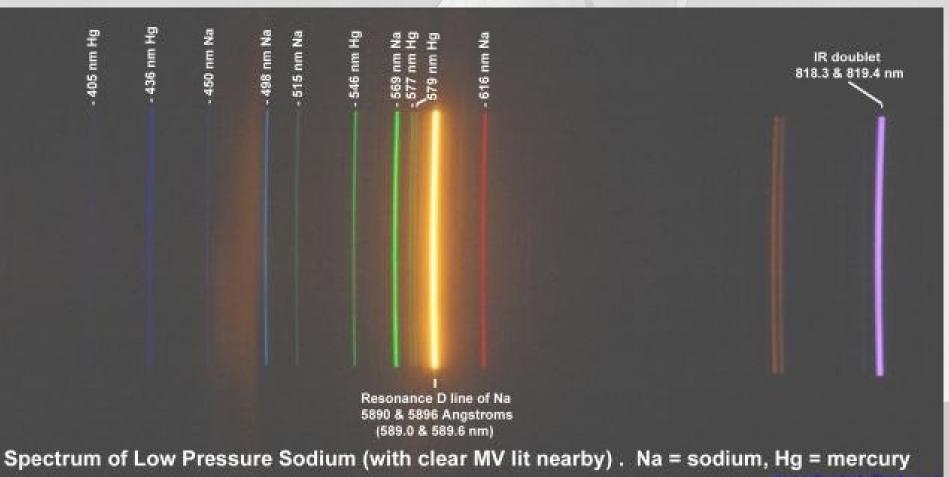
ΟΤΑ	FOV	<u>Pixel</u>	Mag
ES	60.90 x 45.58 arcmin	0.78 arcsec	45.20
C11	21.49 x 6.08 arcmin	0.28 arcsec	128.09
C14	15.39 x 11.52 arcmin	0.20 arcsec	178.87

- Match to target
 - Use the best combination to 'just' include the object you are trying to photograph


Filter Wheel

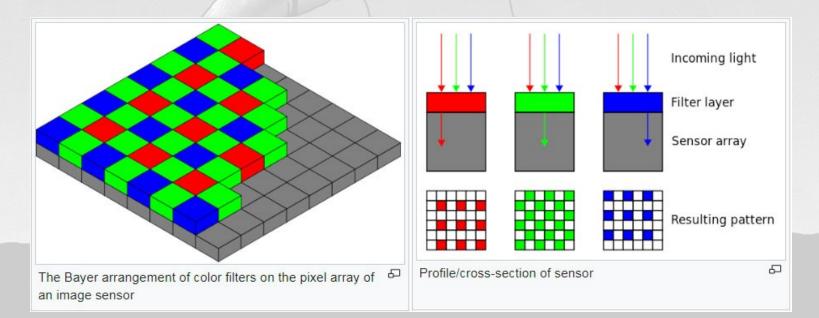
- Monochrome cameras are more sensitive and have a larger dynamic range
 - DLSR's have cut-off filters
- You will want a filter wheel to switch between Luminance, Red, Green and Blue filters
 - Perhaps Oiii, Sii and H-Alpha

Light Spectrum



Filters

- RGB
- Use of Luminance
 - Establishes baseline for intensities
- Special filters: Oiii, Sii, H-alpha
 - Detect older stars or extent of nebulae
 - Use false colors when combining with RGB
- Chromatic aberration filters
 - Removes blue blooming around bright stars
 - Most notable in doublet refractors
- Matched filters are expensive
 - Different transmission/focus


Street Lights

- LPR/UHC light pollution filters
 - Light Pollution Reduction/Ultra High Contrast

DSLR's and De-Bayering

- All pixels are black and white period
 - They measure intensity
- A Bayer pattern of colored filters are arranged 'on-top' the pixels
 - The extra green is used for luminance
- The raw image must be 'de-bayered' into separate channels in order to be processed

FITS Files

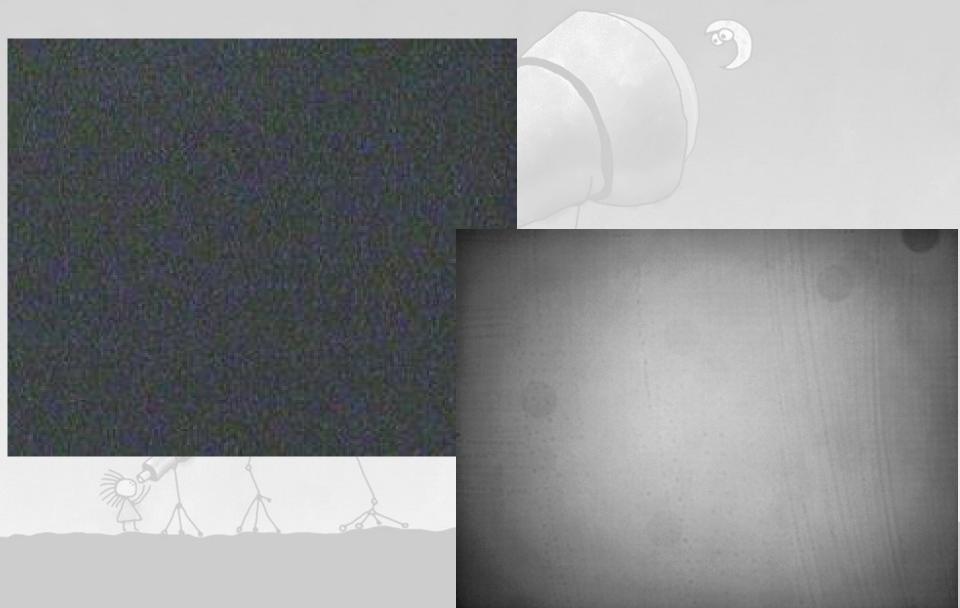
- All astronomical software uses the .fits file types
 - Camera 'RAW' images are converted to .fits
- Consists of a header and multiple image/data sections
 - This is good, lots of detail can be kept in the header
 - Camera data, date, telescope, weather, pointing info, who the observer was, etc.
 - The de-bayered color channels can be kept together in one file, each in it's separate section
- Like the RAW image all detail is kept
 - Eg: these can get large

FITS Header

	BITPIX = 16	/ number of bits per data pixel
	INSTRUME= 'ZWO CCD ASI1600	• •
		Telescope name
		Observer name
		Object name
	EXPTIME = 3.000000E+01 /	Total Exposure Time (s)
	CCD-TEMP= -1.40E+01 / XPIXSZ = 3.800000E+00 /	CCD Temperature (Celsius)
	XPIXSZ = 3.800000E+00 /	X binned pixel size in microns
	YPIXSZ = 3.800000E+00 /	Y binned pixel size in microns
		Frame Type
	FILTER = 'Red ' / F	Filter
		Focal Length (mm)
	APTDIA = 1.52E+02 /	Telescope diameter (mm)
	SCALE = 7.934615E-01 / 3	arcsecs per pixel
	SITELAT = 4.487806E+01 /	Latitude of the imaging site in degrees Longitude of the imaging site in degrees
	SITELONG= -1.230381E+02 /	Longitude of the imaging site in degrees
	AIRMASS = 2.021975E+00 / /	
		Object J2000 RA in Hours
		Object J2000 DEC in Degrees
		Object J2000 RA in Degrees
		Object J2000 DEC in Degrees
	-	Equinox
		9.151' / UTC start date of observation
	GAIN = 60. / G	
-		ffset
7	SKYTEMP = -17.35 / S	ky Temperature
T	OTATEMP = 36.86 / 0	
		TA Dew Point Depresion
	OTAHUM = 90.0 / 0	,
	OTADP = 34.16 / OT	TA Dew Point

Exposure vs Gain (ISO)

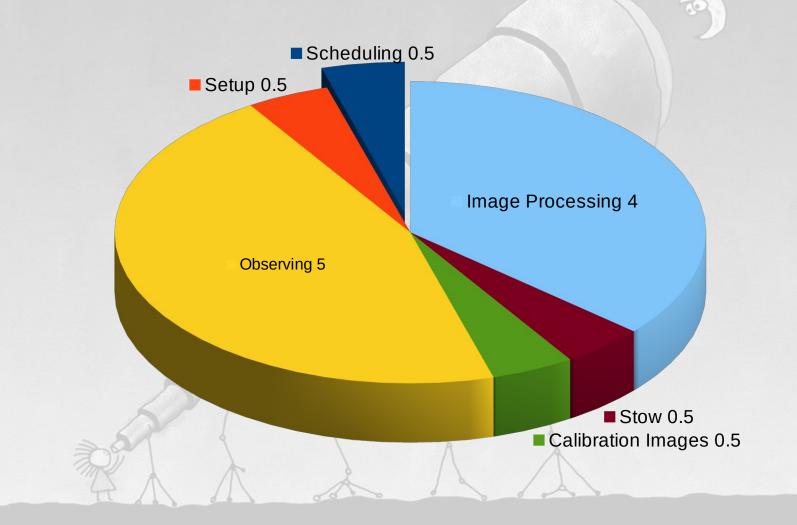
- The longer the exposure, the more likely you will get star trails (and capture micro-sats, space junk, cosmic rays, shooting stars ...)
 - Taking multiple shorter images allow you to delete the bad ones (and stack)
- The higher the gain, the more noise will be in the image from the camera
 - At some point stacking software will start counting noise as stars and give up
- Need to strike a balance usually the longest exposure possible at the lowest gain.
 - This is where stacking comes in ...
- For Planetary take fast video and select best frames and stack those


Advantages of Stacking

- Take 10, 1 minute exposures instead of 1, 10 minute one
 - Allows you to use a lower gain
 - Can throw away bad images
 - Micro-satellites, tracking errors, shooting stars, etc
- Reduces SNR (signal to noise ratio)
 - Noise is random, does not add up
 - A faint star will 'add-up' and pop out of the noise

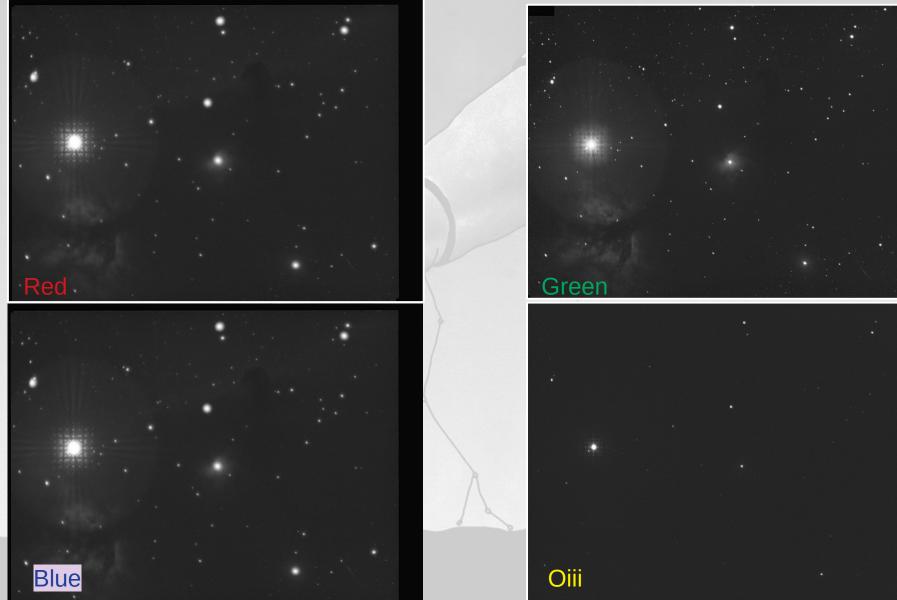
Bias, Darks and Flats – oh my ...

- Calibration Frames: Improving SNR
 - Bias:
 - Shortest dark exposure possible
 - Tells us the fixed noise pattern of the camera
 - Dark:
 - Dark exposure at the same exp and gain as images
 - Thermal camera noise
 - Flat:
 - Taken looking at a flat white area (t-shirt over telescope)
 - Same gain as images, but exp set to ³/₄ max ADU
 - Shows vignetting, uneven illumination and dust motes
 - Darks and flats need to be taken at same camera temperature and rotation as images


Dark and Flat Frames

Processing

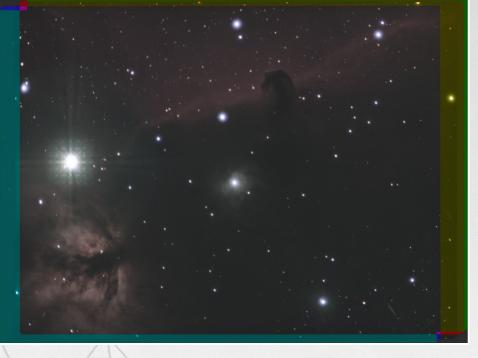
- If Stacking:
 - Need to align, normalize and apply calibration frames
 - Good idea to apply calib. frames even if not stacking
- Need to enhance images due to extended filter range in IR/UV
- FITS or RAW has data buried
 - Need to 'stretch' image to extract visual data
- Also need to adjust saturation, levels and color balance


Can take as much time to process as it did to take the images!

Example Processing an Image Stack

- Create Master Dark, Bias, Flat and Bad Pixel maps
- Apply the masters to each image
- Identify stars (calibration points)
- Register frames (locates sames stars in each of the images)
- Normalize frames (rotate/resize/stretch)
- Integrate (Adds them all together)
- RGB combine (Yay! Color)
- Saturation/Color Balance/Dynamic Stretch
 - Eg. "Photoshop" it ...

What Do the Colors Mean?



Adding Them All Up

Luminance

Raw LRGB

Adjusting for 'Humans' Aka 'Photoshoping'

Blasted Micro Satellites!

M42 – Great Orion Nebula Raw Combined Image

M42 – Great Orion Nebula Adjusted Saturation

Western Veil Nebula: Ha, Sii, Oiii

NGC-2175 Monkey Head Nebula

00

H-Alpha

Software

- BackyardEOS \$30, Camera control
- Siril \$0
- Deep Sky Stacker \$0
- ASTAP \$0
- IRIS \$0, Planetary and Deep Sky
- RegiStax \$0, Planetary
- PIPP \$0, Planetary (auto selects images from video)
- AstroArt \$100
- Astro Pixel Processor \$170
- CCDStack \$200
- PixInsight \$300
- MaximDL \$600

Hints

- Do one thing at a time
 - Get that working before moving on
 - Only make ONE change at a time!
 - Don't complicate with potential of multiple issues
- Don't calculate by hand
 - Use WEB calculator (http://www.12dstring.me.uk/fovcalc.php)
- Get out there and try it
- Take notes!!
- Join an Astronomy Club seek advice

References

- Cloudy Night forum: https://www.cloudynights.com/
- Rose City Astronomers: https://www.rosecityastronomers.net/
- https://www.skyandtelescope.com/
- http://www.astronomy.com/
- FOV calculator: http://www.12dstring.me.uk/fovcalc.php
- Excellent tutorial on pixels/noise/flats/darks/bias: https://cloudbreakoptics.com/blogs/news/astrophotography-pixel-bypixel-part-1
- Google !!

OMG that sea captain is picking his nose!!

What We Covered

- Types of Astrophotography
- Cameras and attaching
- Field of View
- Filters, Light Pollution
- Calibration Frames
- Processing, Stacking
- Hints & Tips
- References

Mahalo!

Sifan Kahale Hōkū Wahine (Star Woman)